Generalized Fractional Hybrid Hamilton Pontryagin Equations
نویسنده
چکیده
In this work we present a new approach on the study of dynamical systems. Combining the two ways of expressing the uncertainty, using probabilistic theory and credibility theory, we have investigated the generalized fractional hybrid equations. We have introduced the concepts of generalized fractional Wiener process, generalized fractional Liu process and the combination between them, generalized fractional hybrid process. Corresponding generalized fractional stochastic, respectively fuzzy, respectively hybrid dynamical systems were defined. We have applied the theory for generalized fractional hybrid Hamilton-Pontryagin (HP) equation and generalized fractional Hamiltonian equations. We have found fractional Langevin equations from the general fractional hybrid Hamiltonian equations. For these cases and specific parameters, numerical simulations were done.
منابع مشابه
A ug 2 00 9 Stochastic generalized fractional HP equations and applications
In this paper we established the condition for a curve to satisfy stochastic generalized fractional HP (Hamilton-Pontryagin) equations. These equations are described using Itô integral. We have also considered the case of stochastic generalized fractional Hamiltonian equations, for a hyperregular Lagrange function. From the stochastic generalized fractional Hamiltonian equations, Langevin gener...
متن کاملHybrid Fuzzy Fractional Differential Equations by Hybrid Functions Method
In this paper, we study a new operational numerical method for hybrid fuzzy fractional differential equations by using of the hybrid functions under generalized Caputo- type fuzzy fractional derivative. Solving two examples of hybrid fuzzy fractional differential equations illustrate the method.
متن کاملExtremal Positive Solutions For The Distributed Order Fractional Hybrid Differential Equations
In this article, we prove the existence of extremal positive solution for the distributed order fractional hybrid differential equation$$int_{0}^{1}b(q)D^{q}[frac{x(t)}{f(t,x(t))}]dq=g(t,x(t)),$$using a fixed point theorem in the Banach algebras. This proof is given in two cases of the continuous and discontinuous function $g$, under the generalized Lipschitz and Caratheodory conditions.
متن کاملCascade of Fractional Differential Equations and Generalized Mittag-Leffler Stability
This paper address a new vision for the generalized Mittag-Leffler stability of the fractional differential equations. We mainly focus on a new method, consisting of decomposing a given fractional differential equation into a cascade of many sub-fractional differential equations. And we propose a procedure for analyzing the generalized Mittag-Leffler stability for the given fractional different...
متن کاملBasic results on distributed order fractional hybrid differential equations with linear perturbations
In this article, we develop the distributed order fractional hybrid differential equations (DOFHDEs) with linear perturbations involving the fractional Riemann-Liouville derivative of order $0 < q < 1$ with respect to a nonnegative density function. Furthermore, an existence theorem for the fractional hybrid differential equations of distributed order is proved under the mixed $varphi$-Lipschit...
متن کامل