Generalized Fractional Hybrid Hamilton Pontryagin Equations

نویسنده

  • OANA CHIŞ
چکیده

In this work we present a new approach on the study of dynamical systems. Combining the two ways of expressing the uncertainty, using probabilistic theory and credibility theory, we have investigated the generalized fractional hybrid equations. We have introduced the concepts of generalized fractional Wiener process, generalized fractional Liu process and the combination between them, generalized fractional hybrid process. Corresponding generalized fractional stochastic, respectively fuzzy, respectively hybrid dynamical systems were defined. We have applied the theory for generalized fractional hybrid Hamilton-Pontryagin (HP) equation and generalized fractional Hamiltonian equations. We have found fractional Langevin equations from the general fractional hybrid Hamiltonian equations. For these cases and specific parameters, numerical simulations were done.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A ug 2 00 9 Stochastic generalized fractional HP equations and applications

In this paper we established the condition for a curve to satisfy stochastic generalized fractional HP (Hamilton-Pontryagin) equations. These equations are described using Itô integral. We have also considered the case of stochastic generalized fractional Hamiltonian equations, for a hyperregular Lagrange function. From the stochastic generalized fractional Hamiltonian equations, Langevin gener...

متن کامل

Hybrid Fuzzy Fractional Differential Equations by Hybrid Functions Method

In this paper, we study a new operational numerical method for hybrid fuzzy fractional differential equations by using of the hybrid functions under generalized Caputo- type fuzzy fractional derivative. Solving two examples of hybrid fuzzy fractional differential equations illustrate the method.

متن کامل

Extremal Positive Solutions For The Distributed Order Fractional Hybrid Differential Equations

In this article, we prove the existence of extremal positive solution for the distributed order fractional hybrid differential equation$$int_{0}^{1}b(q)D^{q}[frac{x(t)}{f(t,x(t))}]dq=g(t,x(t)),$$using a fixed point theorem in the Banach algebras. This proof is given in two cases of the continuous and discontinuous function $g$, under the generalized Lipschitz and Caratheodory conditions.

متن کامل

Cascade of Fractional Differential Equations and Generalized Mittag-Leffler Stability

This paper address a new vision for the generalized Mittag-Leffler stability of the fractional differential equations. We mainly focus on a new method, consisting of decomposing a given fractional differential equation into a cascade of many sub-fractional differential equations. And we propose a procedure for analyzing the generalized Mittag-Leffler stability for the given fractional different...

متن کامل

Basic results on distributed order fractional hybrid differential equations with linear perturbations

In this article, we develop the distributed order fractional hybrid differential equations (DOFHDEs) with linear perturbations involving the fractional Riemann-Liouville derivative of order $0 < q < 1$ with respect to a nonnegative density function. Furthermore, an existence theorem for the fractional hybrid differential equations of distributed order is proved under the mixed $varphi$-Lipschit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010